Topology-based cancer classification and related pathway mining using microarray data
نویسندگان
چکیده
Cancer classification is the critical basis for patient-tailored therapy, while pathway analysis is a promising method to discover the underlying molecular mechanisms related to cancer development by using microarray data. However, linking the molecular classification and pathway analysis with gene network approach has not been discussed yet. In this study, we developed a novel framework based on cancer class-specific gene networks for classification and pathway analysis. This framework involves a novel gene network construction, named ordering network, which exhibits the power-law node-degree distribution as seen in correlation networks. The results obtained from five public cancer datasets showed that the gene networks with ordering relationship are better than those with correlation relationship in terms of accuracy and stability of the classification performance. Furthermore, we integrated the ordering networks, classification information and pathway database to develop the topology-based pathway analysis for identifying cancer class-specific pathways, which might be essential in the biological significance of cancer. Our results suggest that the topology-based classification technology can precisely distinguish cancer subclasses and the topology-based pathway analysis can characterize the correspondent biochemical pathways even if there are subtle, but consistent, changes in gene expression, which may provide new insights into the underlying molecular mechanisms of tumorigenesis.
منابع مشابه
SFLA Based Gene Selection Approach for Improving Cancer Classification Accuracy
In this paper, we propose a new gene selection algorithm based on Shuffled Frog Leaping Algorithm that is called SFLA-FS. The proposed algorithm is used for improving cancer classification accuracy. Most of the biological datasets such as cancer datasets have a large number of genes and few samples. However, most of these genes are not usable in some tasks for example in cancer classification....
متن کاملFeature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine
We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...
متن کاملClassification and Biomarker Genes Selection for Cancer Gene Expression Data Using Random Forest
Background & objective: Microarray and next generation sequencing (NGS) data are the important sources to find helpful molecular patterns. Also, the great number of gene expression data increases the challenge of how to identify the biomarkers associated with cancer. The random forest (RF) is used to effectively analyze the problems of large-p and smal...
متن کاملPrediction of blood cancer using leukemia gene expression data and sparsity-based gene selection methods
Background: DNA microarray is a useful technology that simultaneously assesses the expression of thousands of genes. It can be utilized for the detection of cancer types and cancer biomarkers. This study aimed to predict blood cancer using leukemia gene expression data and a robust ℓ2,p-norm sparsity-based gene selection method. Materials and Methods: In this descriptive study, the microarray ...
متن کاملA New Knowledge-Based System for Diagnosis of Breast Cancer by a combination of the Affinity Propagation and Firefly Algorithms
Breast cancer has become a widespread disease around the world in young women. Expert systems, developed by data mining techniques, are valuable tools in diagnosis of breast cancer and can help physicians for decision making process. This paper presents a new hybrid data mining approach to classify two groups of breast cancer patients (malignant and benign). The proposed approach, AP-AMBFA, con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic Acids Research
دوره 34 شماره
صفحات -
تاریخ انتشار 2006